The Decomposability of Normal Distribution

Ziyuan Feng

December 12, 2017

1 Proposition

If $X_{1}, X_{2} \ldots X_{n}$ are independent random variables, and $X_{1}+X_{2}+\cdots+X_{n}$ is normally distributed, then $X_{1}, X_{2} \ldots X_{n}$ are all normally distributed.

2 Lemma One

Assume $\alpha>0 . P(x)$ is a function of x and $F(x)$ is one of the primitive function of $P(x)$. There holds

$$
\begin{equation*}
\int_{0}^{+\infty} x^{\alpha} P(x) d x=\alpha \int_{0}^{+\infty} x^{\alpha-1}[1-F(x)] d x \tag{1}
\end{equation*}
$$

Proof Assume that $b<+\infty$ and the integration converges.

$$
\begin{align*}
\int_{0}^{b+} x^{\alpha} P(x) d x & =\left.x^{\alpha} F(x)\right|_{0} ^{b+}-\int_{0}^{b} \alpha x^{\alpha-1} F(x) d x \tag{2}\\
& =b^{\alpha} F(b+)+\alpha \int_{0}^{b} x^{\alpha-1}[1-F(x)]-\alpha \int_{0}^{b} x^{\alpha-1} d x \tag{3}\\
& =b^{\alpha}[F(b+)-1]+\alpha \int_{0}^{b} x^{\alpha}[1-F(x)] d x \tag{4}
\end{align*}
$$

Let $b \rightarrow+\infty . b^{\alpha}[F(b+)-1] \rightarrow 0$. So (1) is proved.

3 Lemma Two

[1] Assume that X is the random variable of an unknown probability distribution D with $p(x)$ as its PDF and $F(x)$ as its CDF. D is a normal distribution if and only if X 's characteristic function $\phi(t) \neq 0, \forall t$ and there exists a real-value number $0<\eta<\frac{\sqrt{2}}{2}$ which admits that

$$
\begin{equation*}
A(\eta)=\int_{-\infty}^{+\infty} e^{\eta^{2} x^{2}} p(x) d x<\infty \tag{5}
\end{equation*}
$$

Proof

1. Sufficiency

Assume that D is a standard normal distribution, $p(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^{2}}{2}} d x$. Its characteristic function is $\phi(t)=e^{t^{2}}$. Obviously, $\phi(t) \neq 0, \forall t$.

$$
\begin{align*}
A(\eta) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{\eta^{2} x^{2}} e^{-\frac{x^{2}}{2}} d x \tag{6}\\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{\left(\eta^{2}-\frac{1}{2}\right) x^{2}} d x \tag{7}\\
{\left[\int_{-\infty}^{+\infty} e^{\left(\eta^{2}-\frac{1}{2}\right) x^{2}} d x\right]^{2} } & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{\left(\eta^{2}-\frac{1}{2}\right)\left(x^{2}+y^{2}\right)} d x d y \tag{8}\\
(x=r \cos \theta, y=r \sin \theta) & =\int_{0}^{+\infty} \int_{0}^{2 \pi} e^{\left(\eta^{2}-\frac{1}{2}\right) r^{2}} r d r d \theta \tag{9}\\
& =2 \pi \int_{0}^{+\infty} e^{\left(\eta^{2}-\frac{1}{2}\right) r^{2}} r d r \tag{10}
\end{align*}
$$

For the integration to converge, $\eta^{2}<\frac{1}{2}$ is needed.Therefore

$$
\begin{equation*}
A(\eta)=\sqrt{\frac{1}{1-2 \eta^{2}}}<\infty \tag{11}
\end{equation*}
$$

2. Necessity

Assume that $t \in R$.

$$
\begin{equation*}
|i t x| \leq \eta^{2} x^{2}+\frac{|t i|^{2}}{\eta^{2}}=\eta^{2} x^{2}+\frac{t^{2}}{\eta^{2}} \tag{12}
\end{equation*}
$$

So the characteristic function ϕ always exists.

$$
\begin{align*}
|\phi(t)| & \leq\left|\int_{-\infty}^{+\infty} e^{\eta^{2} x^{2}+\frac{t^{2}}{\eta^{2}}} p(x) d x\right| \tag{13}\\
& =e^{\frac{t^{2}}{\eta^{2}}} \int_{-\infty}^{+\infty} e^{\eta^{2} x^{2}} p(x) d x \tag{14}\\
& =e^{\frac{t^{2}}{\eta^{2}}} A(\eta) \tag{15}
\end{align*}
$$

Since $\phi(t)$ is analytic at all finite points of the complex plane, it is an entire function. The order ρ of an entire function is defined as

$$
\rho=\limsup _{r \rightarrow \infty} \frac{\ln \left(\ln \left(\|f\|_{\infty, D_{r}}\right)\right)}{\ln r}
$$

where $\|f\|_{\infty, D_{r}}=\sup \left\{\mid f(x) \| x \in D_{r}\right\} . r$ is the radius of the disk D_{r}.

According to Hardamand Factorization Theorm[2], an entire function of finite order ρ admits such a factorization that

$$
\phi(t)=t^{m} e^{g(t)} \prod_{n=1}^{\infty} E_{[\rho]}\left(\frac{z}{a_{n}}\right)
$$

where $g(t)$ is a polynomial item with degree $q \leq \rho$ and $\left\{a_{n}\right\}$ is the non-zero zeros of $\phi(t)$. (15) shows that the degree ρ of $\phi(t)$ is no more than 2 . Since $\phi(t) \neq 0, \forall t$, hence

$$
\phi(t)=e^{a t^{2}+b i t} \quad a, b \in C
$$

Considering $-i \phi^{\prime}(0)$ is the expectation and $-\phi^{\prime \prime}(0)$ is the second order moment, a and b must be real numbers.

Therefore, the characteristic function $\phi(t)$ is the one corresponding to the normal distribution. So D is a normal distribution.

4 Proof

Assume the middle numbers of X_{1} and X_{2} are zero. Denote that $Y=X_{1}+X_{2}$.

$$
\begin{align*}
P(|Y|>t)=P\left(\left|X_{1}+X_{2}\right|>t\right) & \geq P\left(\left\{\left|X_{1}\right| \geq t\right\} \cap\left\{\left|X_{2}\right| \geq 0\right\}\right) \tag{16}\\
& =P\left(\left|X_{1}\right| \geq t\right) P\left(\left|X_{2}\right| \geq 0\right) \tag{17}\\
& =\frac{1}{2} P\left(\left|X_{1}\right|>t\right) \tag{18}
\end{align*}
$$

Therefore

$$
\begin{equation*}
1-F_{Y}(t)+F_{Y}(-t) \geq \frac{1}{2}\left[1-F_{X 1}(t)+F_{X 1}(-t)\right] \tag{19}
\end{equation*}
$$

As for X_{1}, there exists $\eta>0$ which permits that

$$
\begin{align*}
A_{X_{1}}(\eta) & =\int_{-\infty}^{+\infty} e^{\eta^{2} x^{2}} p(x) d x \tag{20}\\
& =\int_{0}^{+\infty} e^{\eta^{2} x^{2}}[p(x)+p(-x)] d x \tag{21}\\
\left(p\left(e^{x^{2}}\right)=\frac{p(x)}{2 x e^{x^{2}}}\right) & =\int_{0}^{+\infty}\left(e^{x^{2}}\right)^{\eta^{2}}\left[p\left(e^{x^{2}}\right)-p\left(-e^{x^{2}}\right)\right] d e^{x^{2}} \tag{22}\\
\left(t=e^{x^{2}}\right) & =\int_{1}^{+\infty} t^{\eta^{2}}[p(t)-p(-t)] d t \tag{23}\\
& =\int_{1}^{+\infty} t^{\eta^{2}} p(t) d t-\int_{1}^{+\infty} t^{\eta^{2}} p(-t) d t \tag{24}\\
(\text { LemmaOne }) & =\eta^{2} \int_{1}^{+\infty} t^{\eta^{2}-1}\left[1-F_{X 1}(t)\right] d t-\eta^{2} \int_{1}^{+\infty} t^{\eta^{2}-1}\left[1-\left(1-F_{X 1}(-t)\right)\right] d t \tag{25}\\
& =\eta^{2} \int_{1}^{+\infty} t^{\eta^{2}-1}\left[1-F_{X 1}(t)-F_{X 1}(-t)\right] d t \tag{26}\\
& \leq \eta^{2} \int_{1}^{+\infty} t^{\eta^{2}-1}\left[1-F_{X_{1}}(t)+F_{X_{1}}(-t)\right] d t \tag{27}\\
(19) & \leq 2 \eta^{2} \int_{1}^{+\infty} t^{\eta^{2}-1}\left[1-F_{Y}(t)+F_{Y}(-t)\right] d t \tag{28}\\
(\text { LemmaOne }) & =2 \int_{1}^{+\infty} t^{\eta^{2}}\left[p_{Y}(t)+p_{Y}(-t)\right] d t \tag{29}\\
& \leq 2 \int_{1}^{+\infty} e^{\eta^{2} y^{2}}\left[p_{Y}(y)+p_{Y}(-y)\right] d y \tag{30}\\
& =2 A_{Y}(\eta)<\infty \tag{31}
\end{align*}
$$

Obviously, the characteristic function of X_{1} is $\phi(t)=\int_{-\infty}^{\infty} e^{i t x} d x>0$, which has no zeros. According to Lemma Two, X_{1} is normally distributed.

Since $X_{1}+X_{2}+\cdots+X_{n}$ is normally distributed, X_{1} and $X_{2}+\cdots+X_{n}$ are independent, both X_{1} and $X_{2}+\cdots+X_{n}$ are normally distributed. Continuing this process leads to the conclusion that $X_{1}, X_{2} \ldots X_{n}$ are all normally distributed.

References

[1] W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley Sons, Inc, 1971.
[2] E. W. Weisstein. Hadamard factorization theorem.
URL http://mathworld.wolfram.com/HadamardFactorizationTheorem.html.

