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1 Proposition
If X1, X2 . . . Xn are independent random variables, and X1+X2+ · · ·+Xn is normally distributed,
then X1, X2 . . . Xn are all normally distributed.

2 Lemma One
Assume α > 0. P (x) is a function of x and F (x) is one of the primitive function of P (x). There
holds ∫ +∞

0
xαP (x)dx = α

∫ +∞

0
xα−1[1− F (x)]dx (1)

Proof Assume that b < +∞ and the integration converges.∫ b+

0
xαP (x)dx = xαF (x)|b+0 −

∫ b

0
αxα−1F (x)dx (2)

= bαF (b+) + α

∫ b

0
xα−1[1− F (x)]− α

∫ b

0
xα−1dx (3)

= bα[F (b+)− 1] + α

∫ b

0
xα[1− F (x)]dx (4)

Let b → +∞. bα[F (b+)− 1] → 0. So (1) is proved.

3 Lemma Two
[1] Assume that X is the random variable of an unknown probability distribution D with p(x) as
its PDF and F (x) as its CDF. D is a normal distribution if and only if X’s characteristic function
ϕ(t) ̸= 0, ∀t and there exists a real-value number 0 < η <

√
2
2 which admits that

A(η) =

∫ +∞

−∞
eη

2x2
p(x)dx < ∞ (5)
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Proof

1. Sufficiency

Assume that D is a standard normal distribution, p(x) = 1√
2π

∫ +∞
−∞ e−

x2

2 dx. Its characteristic

function is ϕ(t) = e
t2

2 . Obviously, ϕ(t) ̸= 0, ∀t.

A(η) =
1√
2π

∫ +∞

−∞
eη

2x2
e−

x2

2 dx (6)

=
1√
2π

∫ +∞

−∞
e(η

2− 1
2
)x2

dx (7)

[

∫ +∞

−∞
e(η

2− 1
2
)x2

dx]2 =

∫ +∞

−∞

∫ +∞

−∞
e(η

2− 1
2
)(x2+y2)dxdy (8)

(x = r cos θ, y = r sin θ) =

∫ +∞

0

∫ 2π

0
e(η

2− 1
2
)r2rdrdθ (9)

= 2π

∫ +∞

0
e(η

2− 1
2
)r2rdr (10)

For the integration to converge, η2 < 1
2 is needed.Therefore

A(η) =

√
1

1− 2η2
< ∞ (11)

2. Necessity
Assume that t ∈ R.

|itx| ≤ η2x2 +
|ti|2

η2
= η2x2 +

t2

η2
(12)

So the characteristic function ϕ always exists.

|ϕ(t)| ≤ |
∫ +∞

−∞
e
η2x2+ t2

η2 p(x)dx| (13)

= e
t2

η2

∫ +∞

−∞
eη

2x2
p(x)dx (14)

= e
t2

η2 A(η) (15)

Since ϕ(t) is analytic at all finite points of the complex plane, it is an entire function. The
order ρ of an entire function is defined as

ρ = lim sup
r→∞

ln(ln(||f ||∞,Dr))

ln r

where ||f ||∞,Dr = sup{|f(x)||x ∈ Dr}. r is the radius of the disk Dr.
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According to Hardamand Factorization Theorm[2], an entire function of finite order ρ admits
such a factorization that

ϕ(t) = tmeg(t)
∞∏
n=1

E[ρ](
z

an
)

where g(t) is a polynomial item with degree q ≤ ρ and {an} is the non-zero zeros of ϕ(t).
(15) shows that the degree ρ of ϕ(t) is no more than 2. Since ϕ(t) ̸= 0, ∀t, hence

ϕ(t) = eat
2+bit a, b ∈ C

Considering −iϕ′(0) is the expectation and −ϕ′′(0) is the second order moment, a and b must
be real numbers.
Therefore, the characteristic function ϕ(t) is the one corresponding to the normal distribution.
So D is a normal distribution.

4 Proof
Assume the middle numbers of X1 and X2 are zero. Denote that Y = X1 +X2.

P (|Y | > t) = P (|X1 +X2| > t) ≥ P ({|X1| ≥ t} ∩ {|X2| ≥ 0}) (16)
= P (|X1| ≥ t)P (|X2| ≥ 0) (17)

=
1

2
P (|X1| > t) (18)

Therefore

1− FY (t) + FY (−t) ≥ 1

2
[1− FX1(t) + FX1(−t)] (19)
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As for X1, there exists η > 0 which permits that

AX1(η) =

∫ +∞

−∞
eη

2x2
p(x)dx (20)

=

∫ +∞

0
eη

2x2
[p(x) + p(−x)]dx (21)

(p(ex
2
) =

p(x)

2xex2 ) =

∫ +∞

0
(ex

2
)η

2
[p(ex

2
)− p(−ex

2
)]dex

2 (22)

(t = ex
2
) =

∫ +∞

1
tη

2
[p(t)− p(−t)]dt (23)

=

∫ +∞

1
tη

2
p(t)dt−

∫ +∞

1
tη

2
p(−t)dt (24)

(LemmaOne) = η2
∫ +∞

1
tη

2−1[1− FX1(t)]dt− η2
∫ +∞

1
tη

2−1[1− (1− FX1(−t))]dt (25)

= η2
∫ +∞

1
tη

2−1[1− FX1(t)− FX1(−t)]dt (26)

≤ η2
∫ +∞

1
tη

2−1[1− FX1(t) + FX1(−t)]dt (27)

(19) ≤ 2η2
∫ +∞

1
tη

2−1[1− FY (t) + FY (−t)]dt (28)

(LemmaOne) = 2

∫ +∞

1
tη

2
[pY (t) + pY (−t)]dt (29)

≤ 2

∫ +∞

1
eη

2y2 [pY (y) + pY (−y)]dy (30)

= 2AY (η) < ∞ (31)

Obviously, the characteristic function of X1 is ϕ(t) =
∫∞
−∞ eitxdx > 0, which has no zeros. According

to Lemma Two, X1 is normally distributed.
Since X1 +X2 + · · ·+Xn is normally distributed, X1 and X2 + · · ·+Xn are independent, both

X1 and X2 + · · · + Xn are normally distributed. Continuing this process leads to the conclusion
that X1, X2 . . . Xn are all normally distributed.
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